Polynomials

NCERT Solutions for Chapter 2 Polynomials Class 9 Maths

Book Solutions

1

Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.
(i) 4x2 – 3x + 7
(ii) y2 + √2
(iii) 3√t+t√2
(iv) y+2/y
(v) x10 + y3 + t50

Answer

(i) 4x2 – 3x + 7
⇒ 4x2 – 3x + 7xo
∵ All the exponents of x are whole numbers.                                               
∴ 4x2 – 3x + 7 is a polynomial in one variable.


(ii) y2 + √2
⇒ y2 + √2yo
∵ All the exponents of y are whole numbers.
∴  y2 + √2  is a polynomial in one variable.


(iii)3√t+t√2
⇒ 3t1/2 + √2.t
∵  1/2 is not a whole number,
∴  3t1/2 +√2.t ,
i.e. 3√t+ t√2  is not a polynomial. 

 

(iv) y+ 2/y
If  y + 2× y–1
∵ (–1) is not a whole number.
Y+2y1 , i.e. y+ 2/y
∴ y+ 2/y is not a polynomial.

 

(v) x10 + y3 + t50
∵ Exponent of every variable is a whole number,
∴ x10 + y3 + t50 is a polynomial in x, y and t, i.e. in three variables.

Exercise 2.1 Page Number 32

2

Write the co-efficients of x2 in each of the following: 
(i) 2 + x2 + x
(ii) 2 – x2 + x3 
(iii)
(iv) √2x-1 

Answer

(i) 2 + x2 + x The co-efficient of x2 is 1.
(ii) 2 – x2 + x3 The co-efficient of xis (–1).

(iv) √2x-1
∵  √2x −1 + 0∙X2
∴  The co-efficient of x2 is 0∙
Exercise 2.1 Page Number 32

3

Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Answer

(i) A binomial of degree 35 can be: 3x35 – 4
(ii) A monomial of degree 100 can be: √2y100  
Exercise 2.1 Page Number 32

4

Write the degree of each of the following polynomials:
(i) 5x3 + 4x2 + 7x
(ii) 4 – y2
(iii)5t
− √7
(iv) 3

Answer

(i) 5x3 + 4x2 + 7x
∵ The highest exponent of x is 3.
∴ The degree of the polynomial is 3.


(ii) 4 – y2
∵ The highest exponent of y is 2.
∴ The degree of the polynomial is 2.


(iii) 5t − √7 
∵ The highest exponent of t is 1.
∴ The degree of the polynomial is 1.


(iv) 3 since,  3 = 3x° [ = 1]
∴ The degree of the polynomial 3 is 0.

Exercise 2.1 Page Number 32

5

Classify the following as linear, quadratic and cubic polynomials: 
(i) x+ x
(ii) x – x3 
(iii) y + y2 + 4
(iv) 1 + x
(v) 3t
(vi) r
(vii) 7x

Answer

(i) x2 + x ∵ The degree of x2 + x is 2.
∴ It is a quadratic polynomial.


(ii) x – x3
∵ The degree of x – x3 is 3.
∴ It is a cubic polynomial.


(iii) y + y+ 4
∵ The degree of y + y2 + 4 is 2.
∴ It is a quadratic polynomial.


(iv) 1 + x
∵ The degree of 1 + x is 1.
∴ It is a linear polynomial.


(v) 3t
∵ The degree of 3t is 1.
∴ It is a linear polynomial.


(vi) r
∵ The degree of r2 is 2.
∴ It is a quadratic polynomial.


(vii) 7x3
∵ The degree of 7xis 3.
∴ It is a cubic polynomial.

Exercise 2.1 Page Number 32

1

Find the value of the polynomial 5x – 4x2 + 3 at
(i) x = 0
(ii) x = –1
(iii) x = 2

Answer

(i) ∵ p(x) = 5x – 4x2 + 3
= 5(x) – 4(x)2 + 3
∴ p(0) = 5(0) – 4(0) + 3
= 0 – 0 + 3 = 3
Thus, the value of  5x – 4x2 + 3 at x = 0 is 3.


(ii) ∵ p(x) = 5x – 4x2 + 3
= 5(x) – 4(x)2 + 3
∴ p(–1) = 5(–1) – 4(–1)+ 3
= –5 – 4(1) + 3
= –5 – 4 + 3
= –9 + 3 = –6
∴ The value of  5x – 4x2 + 3 at x = –1 is –6.


(iii) ∵ p(x) = 5x – 4x2 + 3 = 5(x) – 4(x)2 + 3
∴ p(2) = 5(2) – 4(2)2 + 3
= 10 – 4(4) + 3
= 10 – 16 + 3 = –3
Thus the value of 5x – 4x2 + 3 at x = 2 is –3.

Exercise 2.2 Page Number 34

2

Find p(0), p(1) and p(2) for each of the following polynomials:
(i) p(y) = y2 – y + 1
(ii) p(t) = 2 + t + 2t2 – t3 
(iii) p(x) = x3 
(iv) p(x) = (x – 1) (x + 1)

Answer

(i) p(y) = y2 – y + 1
∵ p(y) = y2 – y + 1
= (y)– y + 1
∴ p(0) = (0)2 – (0) + 1
= 0 – 0 + 1 = 1
p(1) = (1)– (1) + 1
= 1 – 1 + 1 = 1
p(2) = (2)2 –2 + 1
= 4 – 2 + 1 = 3


(ii) p(t) = 2 + t + 2t2 – t3
∵ p(t) = 2 + t + 2t2 – t3 
= 2 + t + 2(t)2 – (t)3
∴ p(0) = 2 + (0) + 2(0)2 – (0)3 
= 2 + 0 + 0 – 0 = 2
p(1) = 2 + (1) + 2 (1)– (1)
= 2 + 1 + 2 – 1 = 4
p(2) = 2 + 2 + 2(2)2 – (2)3 
= 2 + 2 + 8 – 8 = 4


(iii) p(x) = x3 ∵ p(x)
= x= (x)
∴ p(0) = (0)
= 0 p(1) = (1)3 = 1
p(2) = (2)3 
= 8 [∵ 2x2x2 = 8]


(iv) p(x) = (x – 1)(x + 1)
∵ p(x) = (x – 1)(x + 1)
∴ p(0) = (0 – 1)(0 + 1)
= –1 x 1 = –1
p(1) = (1 – 1)(1 + 1)
= (0)(2) = 0
p(2) = (2 – 1)(2 + 1)
= (1)(3) = 3

Exercise 2.2 Page Number 34

3

Verify whether the following are zeroes of the polynomial, indicated against them.(i) p(x) = 3x + 1, x = -1/3
(ii)  p(x) = 5x - π, x = 4/5
(iii) p(x) = x2 - 1, x = 1, -1
(iv) p(x) = (x + 1) (x - 2), x = -1, 2
(v) p(x) = x2 , x = 0

(viii) p(x) = 2x + 1, x = 1/2

Answer


(iii) Since, p(x) = x2 – 1
∴ p(1) = (1)2 – 1
= 1 – 1 = 0
Since, p(1) = 0,
∴ x = 1 is a zero of x2 – 1.
Also p(–1) = (–1)– 1
= 1 – 1 = 0
i.e. p(–1) = 0,
∴ x = –1 is also a zero of x2 – 1.
(iv) We have p(x) = (x + 1)(x – 2)
∴ p(–1) = (–1 + 1)(–1 – 2)
= (0)(–3) = 0
Since p(–1) = 0,
∴ x = –1 is a zero of (x + 1) (x – 1).
Also, p(2) = (2 + 1)(2 – 2)
= (3)(0) = 0
Since p(2) = 0,
∴ x = 2 is also a zero of (x + 1)(x – 1).
(v) We have p(x) = x
∴ p(0) = (0)2 = 0
Since p(0) = 0,
∴ 0 is a zero of x2.

Exercise 2.2 Page Number 35

4(i)

Find the zero of the polynomial in each of the following cases:
p(x) = x + 5

Answer

We have p(x) = x + 5
∴ p(x) = 0
⇒ x + 5 = 0
⇒ x = –5
Thus, a zero of x + 5 is (–5).
Exercise 2.2 Page Number 36

4(ii)

Find the zero of the polynomial in each of the following cases:
p(x) = x – 5

Answer

We have p(x) = x – 5
∴ p(x) = 0
⇒ x – 5 = 0
⇒ x = 5
Thus, a zero of x – 5 is 5.
Exercise 2.2 Page Number 36

4(iii)

Find the zero of the polynomial in each of the following cases:
p(x) = 2x + 5

Answer

We have p(x) = 2x + 5
∴ p(x) = 0
⇒ 2x + 5 = 0
⇒ 2x = –5
⇒ x = –5/2
Thus, a zero of 2x + 5 is –5/2
Exercise 2.2 Page Number 36

4(iv)

Find the zero of the polynomial in each of the following cases:
p(x) = 3x – 2

Answer

Since, p(x) = 3x – 2
∴ p(x) = 0
⇒ 3x – 2 = 0
⇒ 3x = 2
⇒ x = 2/3
Thus, a zero of 3x – 2 is 2/3
Exercise 2.2 Page Number 36

4(v)

Find the zero of the polynomial in each of the following cases:
p(x) = 3x

Answer

Since, p(x) = 3x
∴ p(x) = 0
⇒ 3x = 0 
⇒ x = 0/3 = 0
Thus, a zero of 3x is 0.
Exercise 2.2 Page Number 36

4(vi)

Find the zero of the polynomial in each of the following cases:
p(x) = ax, a ≠ 0

Answer

Since, p(x) = ax, a  0
⇒ p(x) = 0
⇒ ax = 0
⇒ x = 0 a  = 0
Thus, a zero of ax is 0.
Exercise 2.2 Page Number 36

4(vii)

Find the zero of the polynomial in each of the following cases:
p(x) = cx + d, c ≠ 0, c, d are real numbers.

Answer

Since, p(x) = cx + d
∴ p(x) = 0
⇒ cx + d = 0
⇒ cx = –d
⇒ x = – dc
Thus, a zero of cx + d is – dc.
Exercise 2.2 Page Number 36

1

Find the remainder when x3 + 3x2 + 3x + 1 is divided by
(i) x + 1
(ii) x – 1/2
(iii) x
(iv) x + p
( v ) 5 + 2x

Answer

(i) ∵ The zero of x + 1 is –1 [∵ x + 1 = 0 ⇒ x = –1]
And by remainder theorem, when p(x) = x3 + 3x2 + 3x + 1 is divided by x + 1, then remainder is p(–1).
∴ p(–1) = (–1)3 + 3 (–1)2 + 3(–1) + 1
= –1 + (3 x 1) + (–3) + 1
= –1 + 3 – 3 + 1
= 0
Thus, the required remainder = 0



(iii) We have p(x) = x3 + 3x2 + 3x + 1 and the zero of x is 0
∴ p(0) = (0)3 + 3(0)2 + 3(0) + 1
= 0 + 0 + 0 + 1
= 1
Thus, the required remainder = 1.


(iv) We have p(x) = x3 + 3x2 + 3x + 1 and zero of x + p = (–π)         [∵ x + π = 0 ⇒ x = – π]
∴ p(–π)= (– 5)3 + 3
(–π)2 + 3(–π) + 1
= –π3 + 3(π2) + (–3π) + 1
= –p3 + 3π2 – 3π + 1
Thus, the required remainder is –π + 3π2 – 3π + 1.


Exercise 2.3 Page Number 40

2

Find the remainder when x3 - ax2 + 6x - a is divided by x - a.

Answer

We have p(x) = x3 – ax+ 6x – a
∵ Zero of x – a is a.      [∵ x – a = 0 ⇒ x = a]
∴ p(a) = (a)3 – a(a)2 + 6(a) – a
= a3 – a3 + 6a – a
= 0 + 5a
= 5a
Thus, the required remainder = 5a
Exercise 2.3 Page Number 40

3

Check whether 7 + 3x is a factor of 3x3 + 7x.

Answer

Exercise 2.3 Page Number 40

1

Determine which of the following polynomials has a factor (x + 1): 
(i) x3 + x2 + x + 1 
(ii) x+ x+ x2 + x + 1 
(iii) x4 + 3x3 + 3x+ x + 1 
(iv) x3 - x2 - (2 + √2)x + √2

Answer

For x + 1 = 0, we have x = –1.
∴ The zero of x + 1 is –1.


(i) p(x) = x3 + x2 + x + 1
∴ p(–1) = (–1)+ (–1)2 + (–1) + 1
= –1 + 1 – 1 + 1 = 0
i.e. when p(x) is divided by (x + 1), then the remainder is zero.
∴ (x + 1) is a factor of x+ x2 + x + 1.

 

(ii) ∵ p(x) = x4 + x3 + x2 + x + 1
∴ p(–1) = (–1)4 + (–1)3 + (–1)2 + (–1) + 1
= 1 – 1 + 1 – 1 + 1
= 3 – 2
= 1
∵ f(–1) ≠ 0
∴ p(x) is not divisible by x + 1. i.e. (x + 1) is not a factor of x4 + x3 + x2 + x + 1.

 

(iii) ∵ p(x) = x4 + 3x3 + 3x2 + x + 1
∴ p(–1) = (–1)4 + 3(–1)3 + 3(–1)2 + (–1) + 1
= (1) + 3(–1) + 3(1) + (–1) + 1
= 1 – 3 + 3 – 1 + 1
= 1 ≠ 0
∵ f(–1) ≠ 0
∴ (x + 1) is not a factor of x4 + 3x3 + 3x+ x + 1.

 

(iv) ∵ p(x) = x3 – x2 – (2 + √2) x + √2)
∴ p(–1) = (–1)3 – (–1)2 – (2 + 2) (–1) + 2
= –1 – 1 – (–1) (2 + √2) + 2
= –1 – 1 + 1 (2 + √2) + 2
= –1 – 1 + 2 + √2 + √2)
= –2 + 2 + 2√2
= 2√2 ≠ 0
Since p(–1) ≠ 0.
∴ (x + 1) is not a factor of x4 + 3x3 + 3x+ x + 1.

Exercise 2.4 Page Number 43

2(i)

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:
p(x) = 2x3 + x2 - 2x - 1, g(x) = x + 1

Answer

We have p(x) = 2x3 + x2 – 2x – 1 and g(x) = x + 1
∴ p(–1) = 2(–1)+ (–1)2 – 2(–1) –1
= 2(–1) + 1 + 2 – 1
= –2 + 1 + 2 – 1
= –3 + 3 = 0
∵ p(–1) = 0
∴ g(x) is a factor of p(x).
Exercise 2.4 Page Number 43

2(ii)

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:
p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2

Answer

We have p(x) = x3 + 3x2 + 3x + 1 and g(x) = x + 2
∴ p(–2) = (–2)3 + 3(–2)2 + 3(–2) + 1
= –8 + 3(4) + (–6) + 1
= –8 + 12 – 6 + 1
= –8 – 6 + 12 + 1
= –14 + 13 = –1
∴ p(–2) ≠ 0
Thus, g(x) is not a factor of p(x).
Exercise 2.4 Page Number 43

2(iii)

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:
p(x) = x3 - 4 x2 + x + 6, g(x) = x - 3

Answer

We have p(x) = x– 4x2 + x + 6 and g(x) = x – 3
∴ p(3) = (3)3 – 4 (3)2 + (3) + 6
= 27 –4(9) + 3 + 6
= 27 – 36 + 3 + 6
= 0
Since g(x) = 0
∴ g(x) is a factor of p(x).
Exercise 2.4 Page Number 43

3(i)

Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:
p(x) = x2 + x + k

Answer

Here p(x) = x2 + x + k
For x – 1 be a factor of p(x), p(1) should be equal to 0.
We have p(1) = (1)2 + 1 + k
or p(1) = 1 + 1 + k
= k + 2
∴ k + 2 = 0
⇒ k= –2
Exercise 2.4 Page Number 44

3(ii)

Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:
p(x) = 2x2 + kx +  √2

Answer

Here, p(x) = 2x2 + kx + √2
For x – 1 be a factor of p(x), p(1) = 0
Since, p(1) = 2(1)+ k(1) + √2
= 2 + k + √2
∵ p(1) must be equal to 0.
∴ k + 2 + √2 = 0
⇒ k = –2 – √2
or k = – (2 + √2).
Exercise 2.4 Page Number 44

3(iii)

Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:
p(x) = kx2 - √2x + 1

Answer

Here p(x) = kx2 – √2 x + 1 and g(x) = x – 1
∴ For (x – 1) be a factor of p(x), p(1) should be equal to 0.
Since p(1) = k(1)2 – √2 (1) + 1
or p(1) = k – √2 + 1
or p(1) = k – √2 + 1
∴ k – √2 +1 = 0
⇒ k= √2 – 1
Exercise 2.4 Page Number 44

3(iv)

Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:
p(x) = kx2 - 3x + k

Answer

Here p(x) = kx2 – 3x + k and g(x) = x – 1
For g(x) be a factor of p(x), p(1) should be equal to 0.
Since p(1) = k(1)2 – 3(1) + k
= k – 3 + k
= 2k – 3
∴ 2k – 3 = 0
⇒ k = 3/2
Exercise 2.4 Page Number 44

4

Factorise:
(i) 12x2 + 7x + 1
(ii) 2x2 + 7x + 3
(iii) 6x2 + 5x - 6
(iv) 3x2 - x - 4

Answer

(i) 12x2 – 7x + 1
Here co-efficient of x2 = 12
Co-efficient of x = –7 and constant term = 1
∴ a = 12, b = –7, c = 1
Now, l + m = –7 and
lm = ac = 12 x 1
∴ We have l = (–4) and m = (–3)
i.e. b = –7 = (–4 – 3).
Now, 12x2 – 7x + 1
= 12x2 – 4x – 3x + 1
= 4x(3x – 1) – 1(3x – 1)
= (3x – 1)(4x – 1)
Thus, 12x2 – 7x + 1 = (3x – 1)(4x – 1)

 

(ii) 2x2 + 7x + 3
Here, a = 2, b = 7 and c = 3
∴ l + m = 7 and lm = 2 x 3 = 6
i.e. 1 + 6 = 7 and 1 x 6 = 6
∴ l = 1 and m = 6
We have 2x2 + 7x + 3 = 2x2 + x + 6x + 3
= x(2x + 1) + 3(2x + 1)
= (2x + 1)(x + 3)
Thus, 2x2 + 7x + 3 = (2x + 1)(x + 3)

 

(iii) 6x2 + 5x – 6
We have a = 6, b = 5 and c = –6
∴ l + m = 5 and lm = ac = 6 x (–6) = –36
∴ l + m = 9 + (–4)
∴ 6x2 + 5x – 6
= 6x2 + 9x – 4x – 6
= 3x(2x + 3) – 2(2x + 3)
= (2x + 3)(3x – 2)
Thus, 6x2 + 5x – 6 = (2x + 3)(3x – 2)

 

(iv)3x2 – x – 4
We have a = 3, b = –1 and c = –4
∴ l + m = –1 and lm = 3 x (–4) = –12
∴ l = –4 and m = 3
Now, 3x2 – x – 4
= 3x2 – 4x + 3x – 4
= x(3x – 4) + 1(3x – 4)
= (3x – 4)(x + 1)
Thus, 3x2 – x – 4 = (3x – 4)(x + 1)

Exercise 2.4 Page Number 44

5(i)

Factorise:
x3 - 2x2 - x + 2

Answer

x3 – 2x2 – x + 2
Rearranging the terms, we have x3 – 2x2 – x + 2
= x3 – x – 2x2 + 2
= x(x2 – 1) – 2(x2 – 1)
= (x2 – 1)(x – 2)
= [(x)2 – (1)2][x – 2]
= (x – 1)(x + 1)(x – 2) [ a2 – b2 = (a + b)(a – b)]
Thus, x3 – 2x2 – x + 2
= (x – 1)(x + 1)(x – 2)
Exercise 2.4 Page Number 44

5(ii)

Factorise:
x3 - 3x2 - 9x - 5

Answer

x– 3x2 – 9x – 5
We have p(x) = x3 – 3x2 – 9x – 5
By trial,
let us find: p(1) = (1)3 – 3(1)2 – 9(1) – 5
= 3 – 3 – 9 – 5
= –14 ≠ 0
Now p(–1) = (–1)3 – 3(–1)2 – 9(–1) –5
= –1 – 3(1) + 9 – 5
= –1 – 3 + 9 – 5
= 0
∴ By factor theorem, [x – (–1)] is a factor of p(x).

∴ x– 3x2 – 9x – 5
= (x + 1)(x2 – 4x – 5)
= (x + 1)[x2 – 5x + x – 5]  [Splitting –4 into –5 and +1]
= (x + 1) [x(x – 5) + 1(x – 5)]
= (x + 1) [(x – 5) (x + 1)]
= (x + 1)(x – 5)(x + 1)
Exercise 2.4 Page Number 44

5(iii)

Factorise:
x3 + 13x2 + 32x + 20 

Answer

x3 + 13x2 + 32x + 20
We have p(x) = x3 + 13x2 + 32x + 20
By trial,
let us find: p(1)=(1)+ 13(1)+ 32(1) + 20
= 1 + 13 + 32 + 20
= 66 ≠ 0
Now p(–1) = (–1)3 + 13(–1)+ 32(–1) + 20
= –1 + 13 – 32 + 20
= 0
∴ By factor theorem, [x – (–1)],
i.e. (x + 1) is a factor p(x).
or x3 + 13x+ 32x + 20
= (x + 1)(x2 + 12x + 20)
= (x + 1)[x+ 2x + 10x + 20]  [Splitting the middle term]
= (x + 1)[x(x + 2) + 10(x + 2)]
= (x + 1)[(x + 2)(x + 10)]
= (x + 1)(x + 2)(x + 10)
Exercise 2.4 Page Number 44

5(iv)

Factorise:
2y3 + y2 - 2y - 1

Answer

2y3 + y2 – 2y – 1
We have p(y) = 2y3 + y2 – 2y – 1
By trial, we have p(1) = 2(1)3 + (1)2 – 2(1) – 1
= 2(1) + 1 – 2 – 1
= 2 + 1 – 2 – 1 = 0
∴ By factor theorem, (y – 1) is a factor of p(y).

∴ 2y3 – y– 2y – 1
= (y – 1)(2y2 + 3y + 1)
= (y – 1)[2y2 + 2y + y + 1] [Splitting the middle term]
= (y – 1)[2y(y + 1) + 1(y + 1)]
= (y – 1)[(y + 1)(2y + 1)]
= (y – 1)(y + 1)(2y + 1)
Exercise 2.4 Page Number 44

1(i)

Use suitable identities to find the following products:
(x + 4) (x + 10)

Answer

(x + 4)(x + 10):
Using the identity (x + a)(x + b)
= x2 + (a + b)x + ab,
we have: (x + 4)(x + 10)
= x2 + (4 + 10)x + (4 x 10)
= x2 + 14x + 40
Exercise 2.5 Page Number 48

1(ii)

Use suitable identities to find the following products:
(x + 8) (x – 10)                      

Answer

(x + 8)(x – 10): Here, a = 8 and b = (–10)
∴ Using (x + a)(x + b)
= x2 + (a + b)x + ab,
we have: (x + 8)(x – 10)
= x2 + [8 + (–10)]x + [8 x (–10)]
= x+ [–2]x + [–80]
= x2 – 2x – 80
Exercise 2.5 Page Number 48

1(iii)

Use suitable identities to find the following products:
(3x + 4) (3x – 5)

Answer

(3x + 4)(3x – 5):
Using the identity (x + a)(x + b)
= x2 + (a + b)x + ab,
we have (3x + 4)(3x – 5)
= (3x)2 + [4 + (–5)]3x + [4 x (–5)]
= 9x2 + [–1]3x + [–20]
= 9x2 – 3x – 20

Exercise 2.5 Page Number 48

1(iv)

Use suitable identities to find the following products:
(y+ 3/2) (y- 3/2)

Answer

Exercise 2.5 Page Number 48

1(v)

Use suitable identities to find the following products:          
(3 - 2x) (3 + 2x)

Answer

(3 – 2x)(3 + 2x):
Using the identity (a + b)(a – b)
= a2 – b2,
we have: (3 – 2x)(3 + 2x)
= (3)2 – (2x)2 
= 9 – 4x2
Exercise 2.5 Page Number 48

2(i)

Evaluate the following products without multiplying directly:
103 × 107              

Answer

We have 103 x 107
= (100 + 3)(100 + 7)
= (100)2 + (3 + 7) x 100 + (3 x 7) [Using (x + a)(x + b) = x2 + (a + b)x + ab]
= 10000 + (10) x 100 + 21
= 10000 + 1000 + 21
= 11021
Exercise 2.5 Page Number 48

2(ii)

Evaluate the following products without multiplying directly:
95 × 96

Answer

We have 95 x 96 = (100 – 5)(100 – 4)
= (100)2 + [(–5) + (–4)] x 100 + [(–5) x (–4)] [Using (x + a)(x + b) = x2 + (a + b)x + ab]
= 10000 + [–9] x 100 + 20
= 10000 + (–900) + 20
= 9120
Exercise 2.5 Page Number 48

2(iii)

Evaluate the following products without multiplying directly:       
104 × 96

Answer

We have 104 x 96 = (100 + 4)(100 – 4)
= (100)2 – (4)2  [Using (a + b)(a – b) = a2 – b2]
= 10000 – 16
= 9984
Exercise 2.5 Page Number 48

3(i)

Factorise the following using appropriate identities:
9x2 + 6xy + y2

Answer

We have 9x2 + 6xy + y2
= (3x)2 + 2(3x)(y) + (y)2
= (3x + y)2 [Using a2 + 2ab + b= (a + b)2]
= (3x + y)(3x + y)
Exercise 2.5 Page Number 48

3(ii)

Factorise the following using appropriate identities:           
4y2 - 4y + 1

Answer

We have 4y2 – 4y + 1
= (2y)2 – 2(2y)(1) + (1)2 
= (2y – 1)2 [∵ a– 2ab + b2 = (a – b)2= (2y – 1)(2y – 1)]

Exercise 2.5 Page Number 48

3(iii)

Factorise the following using appropriate identities:        
xy2/100

Answer

Exercise 2.5 Page Number 48

4(i)

Expand each of the following, using suitable identities:
(x + 2y + 4z)2                    

Answer

(x + 2y + 4z)2
We have (x + y + z)2
= x+ y+ z2 + 2xy + 2yz + 2zx
∴ (x + 2y + 4z)2
= (x)2 + (2y)2 + (4z)2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)
= x2 + 4y+ 16z+ 4xy + 16yz + 8zx
Exercise 2.5 Page Number 49

4(ii)

Expand each of the following, using suitable identities:                 
(2x – y + z)2

Answer

(2x – y + z)2
Using (x + y + z)2 = x2 + y2 + z+ 2xy + 2yz + 2zx,
we have (2x – y + z)2
= (2x)2 + (–y)2 + (z)+ 2(2x)(–y) + 2(–y)(z) + 2(z)(2x)
= 4x2 + y2 + z2 – 4xy – 2yz + 4zx
Exercise 2.5 Page Number 49

4(iii)

Expand each of the following, using suitable identities:                
(–2x + 3y + 2z)2

Answer

(–2x + 3y + 2z)2
Using (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx,
we have (–2x + 3y + 2z)2
= (–2x)2 + (3y)2 + (2z)2 + 2(–2x)(3y) + 2(3y)(2z) + 2(2z)(–2x)
= 4x2 + 9y2 + 4z2 – 12xy + 12yz – 8zx
Exercise 2.5 Page Number 49

4(iv)

Expand each of the following, using suitable identities:
(3a – 7b – c)2

Answer

(3a – 7b – c)2
Using (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx,
we have (3a – 7b – c)2
= (3a)2 + (–7b)2 + (–c)+ 2(3a)(–7b) + 2(–7b)(–c) + 2(–c)(3a)
= 9a+ 49b2 + c2 + (–42ab) + (14bc) + (–6ca)
= 9a2 + 49b2 + c2 – 42ab + 14bc – 6ca
Exercise 2.5 Page Number 49

4(v)

Expand each of the following, using suitable identities:
(–2x + 5y – 3z)2

Answer

(–2x + 5y – 3z)2 

Using (x + y + z)2 =x2 + y2 + z2 + 2xy + 2yz + 2zx,
We have (–2x + 5y – 3z)2
 = (–2x)2 + (5y)2 + (–3z)2 + 2(–2x)(5y) + 2(5y)(–3z) + 2(–3z) (–2x)
=4x2 + 25y2 + 9z2 + [–20xy] + [–30yz] + [12zx]
=4x2 + 25y+ 9z2 – 20xy – 30yz + 12zx

Exercise 2.5 Page Number 49

4(vi)

Expand each of the following, using suitable identities:
[1/4 a - 1/2 b + 1]2

Answer

Exercise 2.5 Page Number 49

5(i)

Factorise:
4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz

Answer

4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
= (2x)2 + (3y)2 + (–4z)2 + 2(2x)(3y) + 2(3y)(–4z) + 2(–4z)(2x)
= (2x + 3y – 4z)2  [Using Identity V]
= (2x + 3y – 4z)(2x + 3y – 4z)
Exercise 2.5 Page Number 49

5(ii)

Factorise:
2x2 + y2 + 8z2 - 2√2 xy + 4√2 yz - 8xz

Answer

2x2 + y2 + 8z2 - 2√2 xy + 4√2 yz - 8xz
= (-√2x)2 + (y)2 + (2√2z)2 + (2×-√2x×y) + (2×y×2√2z) + (2×2√2z×-√2x)
= (-√2x + y + 2√2z)2
 (-√2x + y + 2√2z) (-√2x + y + 2√2z)
Exercise 2.5 Page Number 49

6

Write the following cubes in expanded form:
(i) (2x + 1)3
(ii) (2a – 3b)3
(iii) [3/2 x + 1]3
(iv) [x - 2/3 y]3

Answer

Using Identity VI and Identity VII, we have 
(x + y)= x+ y3 + 3xy (x + y), and 
(x – y)= x3 – y3 – 3xy (x – y).

 

(i) (2x + 1)= (2x)+ (1)3 + 3(2x)(1)[(2x) + (1)]
= 8x3 + 1 + 6x[2x + 1] [Using Identity VI]
= 8x+ 1 + 12x2 + 6x
= 8x3 + 12x2 + 6x + 1

 

(ii) (2a – 3b)3 = (2a)3 – (3b)– 3(2a)(3b)[(2a) – (3b)]
= 8a3 – 27b– 18ab (2a – 3b) [Using Identity VII]
= 8a3 – 27b– [36a2b – 54ab2]
= 8a3 – 27b3 – 36a2b + 54ab2

 

Exercise 2.5 Page Number 49

7(i)

Evaluate the following using suitable identities: 
(99)3

Answer

(99)3
We have 99 = 100 – 1
∴ 993 = (100 – 1)3
= 1003 – 13 – 3(100)(1)(100 – 1)
= 1000000 – 1 – 300(100 – 1)
= 1000000 – 1 – 30000 + 300
= 1000300 – 30001
= 970299
Exercise 2.5 Page Number 49

7(ii)

Evaluate the following using suitable identities:    
(102)3

Answer

(102)3
We have 102 = 100 + 2
∴ (102)= (100 + 2)3
= (100)3 + (2)3 + 3(100)(2) 100 + 2
= 1000000 + 8 + 600[100 + 2]
= 1000000 + 8 + 60000 + 1200
= 1061208
Exercise 2.5 Page Number 49

7(iii)

Evaluate the following using suitable identities:       
(998)3

Answer

(998)3
We have 998 = 1000 – 2
∴ (999)3 = (1000 – 2)3
= (1000)– (2)3 – 3(1000)(2)[1000 – 2]
= 1000000000 – 8 – 6000[1000 – 2]
= 1000000000 – 8 – 6000000 – 12000
= 994011992
Exercise 2.5 Page Number 49

8(i)

Factorise each of the following: 
8a3 + b3 + 12a2b + 6ab2

Answer

8a3 + b3 + 12a2b + 6ab2 
= (2a)3 + (b)3 + 6ab(2a + b)
= (2a)3 + (b)3 + 3(2a)(b)(2a + b)
= (2a + b)3 [Using Identity VI]
= (2a + b)(2a + b)(2a + b)
Exercise 2.5 Page Number 49

8(ii)

Factorise each of the following:                      
8a3 - b3 - 12a2b + 6ab2

Answer

8a– b3 – 12a2b + 6ab2 
= (2a)3 – (b)3 – 3(2a)(b)(2a – b)
= (2a – b)3  [Using Identity VII]
= (2a – b)(2a – b)(2a – b)
Exercise 2.5 Page Number 49

8(iii)

Factorise each of the following: 
27 - 125a3 - 135a + 225a2

Answer

27 – 125a3 – 135a + 225a2 
= (3)– (5a)– 3(3)(5a)[3 – 5a]
= (3 – 5a)3  [Using Identity VII]
= (3 – 5a)(3 – 5a)(3 – 5a)
Exercise 2.5 Page Number 49

8(iv)

Factorise each of the following: 
64a3 - 27b3 - 144a2b + 108ab2

Answer

64a3 – 27b3 – 144 a2b + 108 ab2 
= (4a)– (3b)3 – 3(4a)(3b)[4a – 3b]
= (4a – 3b) [Using Identity VII]
= (4a – 3b)(4a – 3b)(4a – 3b)
Exercise 2.5 Page Number 49

8(v)

Factorise each of the following: 
27p3 - 1/216 - 9/2 p2 + 1/4 p

Answer

Exercise 2.5 Page Number 49

9

Verify : 
(i) x3 + y3 = (x + y) (x2 - xy + y2)
(ii) x3 - y3 = (x - y) (x2 + xy + y2)

Answer

(i) R.H.S. = (x + y)(x– xy + y2)
= x(x2 – xy + y2) + y(x2 – xy + y2)
= x3 – x2y + xy2 + x2y – xy2 + y3
= x3 + y3 = L.H.S.

 

(ii) R.H.S. = (x – y)(x2 + xy + y2)
= x(x2 + xy + y2) – y(x2 + xy + y2)
= x+ x2y + xy– x2y – xy2 – y3
= x– y= L.H.S.

Exercise 2.5 Page Number 49

10

Factorise each of the following:
(i) 27y3 + 125z3                    
(ii) 64m3 - 343n3

Answer

REMEMBER
I. x3 + y3 = (x + y)(x2 + y2 – xy)
II. x– y3 = (x – y)(x2 + y+ xy)

(i) Using the identity (x3 + y3) = (x + y)(x2 – xy + y2),
We have 27y3 + 125z3 = (3y)+ (5z)3
= (3y + 5z)    [(3y)2 – (3y)(5z) + (5z)2]
= (3y + 5z)(9y2 – 15yz + 25z2

 

(ii) Using the identity x3 – y3 = (x – y)(x+ xy + y2),
We have 64m3 – 343n
= (4m)3 – (7n)
= (4m – 7n)[(4m)2 + (4m)(7n) + (7n)2]
= (4m – 7n)(16m2 + 28mn + 49n2)

Exercise 2.5 Page Number 49

11

Factorise : 27x3 + y3 + z3 - 9xyz

Answer

REMEMBER
x3 + y3 + z3 – 3xyz = (x + y + z)(x+ y2 + z2 – xy – yz – zx)
We have 27x+ y+ z3 – 9xyz = (3x)3 + (y)+ (z)3 – 3(3x)(y)(z)
∴ Using the identity x+ y3 + z– 3xyz = (x + y + z)(x+ y2 + z2 – xy – yz – zx),
We have  (3x)3 + (y)3 + (z)– 3(3x)(y)(z)
= (3x + y + z)[(3x)2 + y2 + z2 – (3x x y) – (y x z) – (z x 3x)]
= (3x + y + z)(9x2 + y2 + z2 – 3xy – yz – 3zx)
Exercise 2.5 Page Number 49

12

Verify that: x3 + y3 + z3 - 3xyz = 1/2(x + y + z) [(x - y)+ (y - z)+ (z - x)2]

Answer

R.H.S. = 1/2 (x + y + z)[(x – y)2 + (y – z)2 + (z – x)2]
= 1/2 (x + y + z)[(x2 + y2 – 2xy) + (y2 + z2 –2yz) + (z2 + x2 – 2xz)]
= 1/2 (x + y + z)[x2 + y2 + y2 + z2 + z2 + x2 – 2xy – 2yz – 2zx]
= 1/2 (x + y + z)[2(x2 + y2 + z2 – xy – yz – zx)]
= 2 x 1/2 x (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
= (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
= x3 + y3 + z3 – 3xyz = L.H.S.
Exercise 2.5 Page Number 49

13

If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.

Answer

Since x + y + z = 0
∴ x + y = –z or (x + y)3 
= (–z)or x3 + y3 + 3xy(x + y)
= –zor x3 + y3 + 3xy(–z)
= –z[∵ x + y = (–z)]
or x3 + y3 – 3xyz = –z3
or (x3 + y3 + z3) – 3xyz
= 0 or (x3 + y3 + z3) = 3xyz
Hence, if x + y + z = 0, then (x3 + y3 + z3) = 3xyz.
Exercise 2.5 Page Number 49

14

Without actually calculating the cubes, find the value of each of the following:
(i) (-12)3 + (7)3 + (5)3
(ii) (28)3 + (–15)3 + (-13)3

Answer

(i) (–12)3 + (7)+ (5)3
Let x = –12, y = 7 and z = 5
 Then x + y + z = –12 + 7 + 5 = 0
We know that if x + y + z = 0, then x3 + y3 + z= 3xyz.
∴ (–12)3 + (7)3 + (5)3
= 3 [(–12)(7)(5)]   [∵ (–12) + 7 + 5 = 0]
= 3[–420]
= –1260
Thus, (–12)3 + (7)+ (5)3 = –1260

 

(ii) (28)3 + (–15)3 + (–13)
Let x = 28, y = –15 and z = –13
∴ x + y + z = 28 – 15 – 13 = 0
We know that if x + y + z = 0,
then x3 + y3 + z3 = 3xyz.
∴ (28)+ (–15)3 + (–13)3
= 3(28)(–15)(–13) [∵ 28 + (–15) + (–13) = 0]
= 3(5460)
= 16380
Thus, (28)3 + (–15)3 + (–13)3 = 16380

Exercise 2.5 Page Number 49

15

Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given: 
(i) Area : 25a2 - 35a + 12
(ii) Area : 35 y2 + 13y - 12

Answer

REMEMBER
 Area of a rectangle = (Length) x (Breadth)
(i) Area = 25a2 – 35a + 12
We have to factorise the polynomial: 25a2 – 35a + 12
Splitting the co-efficient of a, we have –35 = (–20) + (–15)
[∵ 25 x 12 = 300 and (–20) x (–15)= 300]
= 25a2 – 35a + 12 = 25a2 – 20a – 15a + 12
∴= 5a(5a – 4) – 3(5a – 4) = (5a – 4)(5a – 3)
Thus, the possible length and breadth are (5a – 3) and (5a – 4).

 

(ii) Area = 35y+ 13y – 12
We have to factorise the polynomial 35y+ 13y – 12.
Splitting the middle term, we get 13y = 28y – 15y
[∵ 28 x (–15)= –420 and –12 x 35 = – 420]
∴ 35y2 + 13y – 12
= 35y2 + 28y – 15y – 12
= 7y(5y + 4) –3(5y + 4)
= (5y + 4)(7y – 3)
Thus, the possible length and breadth are (7y – 3) and (5y + 4).

Exercise 2.5 Page Number 49

16

What are the possible expressions for the dimensions of the cuboids whose volumes are given below? 
(i) Volume : 3x2 - 12x
(ii) Volume : 12ky2 + 8ky - 20k

Answer

REMEMBER
Volume of a cuboid = (Length) x (Breadth) x (Height) 
(i) Volume = 3x2 – 12x On factorising 3x2 – 12x,
we have 3x2 – 12x = 3[x2 – 4x]
= 3[x(x – 4)] = 3x (x – 4)
∴ The possible dimensions of the cuboid are: 3, x and (x – 4) units.

 

(ii) Volume = 12ky2 + 8ky – 20k
We have 12ky2 + 8ky – 20k
= 4[3ky2 + 2ky – 5k]
= 4[k(3y2 + 2y – 5)]
= 4k[3y2 – 3y + 5y – 5] (Splitting the middle term)
= 4k[3y(y – 1) + 5(y – 1)]
= 4k[(3y + 5)(y – 1)]
= 4k x (3y + 5) x (y – 1)
Thus, the possible dimensions are: 4k, (3y + 5) and (y – 1) units.

Exercise 2.5 Page Number 50