NCERT Solutions for Chapter 8 Introduction to Trigonometry Class 10 Maths
Book Solutions1
In Δ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine :
(i) sin A, cos A
(ii) sin C, cos C
Answer
2
Answer
In the right ∆ PQR,
Using the Pythagoras theorem, we get
3
If sin A =3/4, calculate cos A and tan A.
Answer
Let us consider, the right ∆ ABC, we have
Perpendicular = BC
and, Hypotenuse = AC
4
Given 15 cot A = 8, find sin A and sec A.
Answer
Let in the right ∆ABC , we have5
Answer
6
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
Answer
7
If cot θ =7/8, Evaluate :
(i)(1+sin θ )(1-sin θ)/(1+cos θ)(1-cos θ)
(ii) cot2θ
Answer
8
If 3cot A = 4/3 , check whether (1-tan2A)/(1+tan2A) = cos2A – sin2A or not.
Answer
9
(i) sin A cos C + cos A sinC
(ii)cos A cos C –sin A sin C
Answer
Let us consider a right ∆ABC, in which ∠B = 90°
For ∠A , we have
Base = AB
Perpendicular=BC
Hypotenuse = AC
10
Answer
It is given that PQR is a right ∆, such that ∠Q = 90oPQ+QR = 25 cm
And PQ = 5cm
Let
QR = X cm
∴PR = (25−X)
∴ By Pythagoras theorem, we have
11
(i) The value of tan A is always less than 1.
(ii) sec A = 12/5 for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) sin θ = 4/3 for some angle θ.
Answer
52 = 32 + 42
25 = 9 + 16
25 = 25
Let a ΔABC in which ∠B = 90º,AC be 12k and AB be 5k, where k is a positive real number.
By Pythagoras theorem we get,
AC2 = AB2 + BC2
(12k)2 = (5k)2 + BC2
BC2 + 25k2 = 144k2
BC2 = 119k2
1
Evaluate the following :
(i) sin 60° cos 30° + sin 30° cos 60°
(ii) 2 tan245° + cos230° – sin260°
(iii) cos 45°/(sec 30° + cosec 30°)
(iv) (sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)
(v) (5cos260° + 4sec230° - tan245°)/(sin230° + cos230°)
Answer
2
Choose the correct option and justify your choice :
(i) 2tan 30°/1+tan230° =
(A) sin 60°
(B) cos 60°
(C) tan 60°
(D) sin 30°
(ii) 1-tan245°/1+tan245° =
(A) tan 90°
(B) 1
(C) sin 45°
(D) 0
(iii) sin 2A = 2 sin A is true when A =
(A) 0°
(B) 30°
(C) 45°
(D) 60°
(iv) 2tan30°/1-tan230° =
(A) cos 60°
(B) sin 60°
(C) tan 60°
(D) sin 30°
Answer
3
Answer
From the table, we have tan 600 = √3 …(1)
Also tan (A+B) = √3 (Given) ….(2)
From (1) and (2) , we get
A+B = 60° …. (3)
Similarly,
A−B = 30° …. (4)
Adding (3) and (4) ,
2A =90°
⇒A = 45°
Subtracting (4) from (3) , we get
2B = 30°
⇒ B = 15°
4
(i) sin (A+B)= sin A +sin B .
(ii)The value of sin
Answer
(i) Let us take A = 30° and B= 60°
then LHS = sin(30°+ 60°)
= sin90° = 1
RHS = sin30°+sin60°
Since, LHS ≠ RHS
∴The statement sin(A+B) = sin A+ sin B is false .
(v) From the table, we have,
cot0° = not defined.
∴ The given statement is true.
1
Evaluate :
(i) sin 18°/cos 72°
(ii) tan 26°/cot 64°
(iii) cos 48° – sin 42°
(iv) cosec 31° – sec 59°
Answer
(iii) cos 48°− sin 42°
∵ cos 48° = cos(90°− 42°) = sin 42° [∵ cos (90°−A) = sin A ]
∴ cos 48°− sin 42° = sin 42° − sin 452° = 0
(iv) cosec 31° – sec 59°
∵ cosec 31° = cosec (90° − 59° ) = sec 59° [∵ cosec (90°−A) = sec A ]
∴ cosec 31° – sec 59° = sec 59°− sec 59° = 0.
2
(i) tan48° tan23° tan42° tan67° = 1
(ii) cos 38° cos52° – sin38° sin52° = 0
Answer
(i) tan 48° tan23° tan42° tan67° = 1
L.H.S. = tan 48° tan 23° tan42° tan67°
= tan(90° − 42°) tan 23° tan42° tan(90° − 23°)
= cot 42° tan 23° tan42° cot 23°
= R.H.S.
Thus , tan 48° tan23° tan42° tan67° = 1
(ii) cos 38° cos 52°– sin 38° sin 52° = 0
L.H.S. =mcos 38° cos 52°– sin 38° sin 52°
= cos 38° cos(90° − 38°) − sin38° sin(90° −38°)
= cos 38° sin 38° − sin 38° cos 38°
[∵ sin(90° – A) = cos A and cos(90° – A ) = sin A )
= 0 = R.H.S.
Thus , cos 38° cos 52° – sin 38° sin 52° = 0
3
Answer
tan 2A = cot( A− 18° )Also tan (2A)° = cot (90° – 2A) [∵ tan θ = cot(90° – θ)]
⇒ A − 18° = 90° – 2A
⇒ A +2A = 90° + 180
⇒ 3A = 108°
4
Answer
tan A = cot B (Given)and cot B = tan(90° –B) [∵ tan(90°−θ) = cot θ]
∴ A = 90° –B
⇒ A+B = 90°.
5
Answer
∵ sec4A = cosec (A− 20°)And sec 4A = cosec (90°− 4A) [∵ cosec (90°− θ) = sec θ]
∴ A− 20°= 90°− 4A
⇒ A +4A = 90°+ 20°
⇒ 5A = 110°
6
sin(B+C)/2) = cos A/2.
Answer
Since , sum of the angles of ∆ ABC is A°+B°+C° = 180°∴B+C = 180° –A
Dividing both sides by 2 ,
7
Answer
Since sin 67° = sin (90°− 23°)= cos 23° [∵ sin (90°− θ)= cos θ ]
Also, cos 75° = cos (90° − 15°)
= Sin 15° [∵cos (90°−θ)= sin θ]
∴ We have :
sin 67°+ cos75°= cos23° + sin15°.
1
Answer
2
Answer
3
(i) (sin263° + sin227°)/(cos217° + cos273°)
(ii) sin 25° cos 65° + cos 25° sin 65°
Answer
(ii) sin25° cos 65° + cos25° sin65°
∵ sin 25°= sin (90°−65°) = cos65° [∵ sin (90°−A) = cos A]
And cos 25° = cos (90°− 65°) = sin 65° [∵ cos (90°− A) = sin A]
∴ sin 25°cos 65° + cos 25° sin 65°
= cos 65° cos 65° + sin 65° sin 65°
= cos265° + sin2 65° [∵ cos2A+ sin2A= 1]
= 1
4
Choose the correct option. Justify your choice.
(i) 9 sec2A− 9 tan2A = ….
(A) 1
(B) 0
(C)8
(D) 0
(ii) (1+ tan
Answer
(i) Since , 9 sec2A− 9 tan2A
= 9(sec2A− tan2A )
= 9(1) [∵ tan2 A +1 = sec2A ⇒ sec2A− tan2 A = 1 ]
= 9
5(i)
Prove the following identities, where the angles involved are acute angles for which the
expressions are defined.
(i) (cosec θ - cot θ)2 = (1-cos θ)/(1+cos θ)
Answer
5(ii)
Answer
5(iii)
Prove: tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ
[Hint : Write the expression in terms of sin θ and cos θ]
Answer
5(iv)
Prove: (1 + sec A)/sec A = sin2A/(1-cos A)
[Hint : Simplify LHS and RHS separately]
Answer
5(v)
Prove: (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A,using the identity cosec2A = 1+cot2A.
Answer
5(vi)
Answer
5(vii)
Answer
5(viii)
Answer
5(ix)
[Hint : Simplify LHS and RHS separately]
Answer
5(x)
Answer