NCERT Solutions for Chapter 12 Algebraic Expressions Class 7 Maths
Book Solutions1
Answer
(ii) (x+y)/2
(iii) z2
(iv) pq/4
(v) x2+y2
(vi) 3mn+5
(vii) 10−yz
(viii) ab−(a+b)
2
Answer
(b) 1+x+x2
Expression
(c) y−y3
Expression
(d) 5xy2+7x2y
Expression
(e) −ab+2b2−3a2
Expression
(ii) (a) −4x+5
Terms: −4x,5
Factors: −4,x ; 5
(b) −4x+5y
Terms: −4x,5y
Factors: −4,x ; 5,y
(c) 5y+3y2
Terms: 5y,3y2
Factors: 5,y ; 3,y,y
(d) xy+2x2y2
Terms: xy,2x2y2
Factors: x,y ; 2x,x,y,y
(e) pq+q
Terms: pq,q
Factors: p,q ; q
(f) 1.2ab−2.4b+3.6a
Terms: 1.2ab,−2.4b,3.6a
Factors: 1.2,a,b ; −2.4,b ; 3.6,a
(g) 3/4x+14
Terms: 3/4x,14
Factors: 3/4,x ; 14
(h) 0.1p2+0.2q2
Terms: 0.1p2,0.2q2
Factors: 0.1,p,p ; 0.2,q,q
3
Identify the numerical coefficients of terms (other than constants) in the following expressions:
(i)5−3t
(ii)1+t+t2+t
(iii)x+2xy+3y
(iv) 100m+1000n
(v)−p2q2+7pq
(vi) 1.2a+0.8b
(vii) 3.14r
(viii) 2(l+b)
(ix) 0.1y+0.01y
Answer
S.No. |
Expression |
Terms |
Numerical Coefficient |
(i) |
5−3t2 |
−3t2 |
−3 |
(ii) |
1+t+t2+t3 |
t |
1 |
t2 |
1 |
||
t3 |
1 |
||
(iii) |
x+2xy+3y |
x |
1 |
2xy |
2 |
||
3y |
3 |
||
(iv) |
100m+1000n |
100m |
100 |
1000n |
1000 |
||
(v) |
−p2q2+7pq |
−p2q2 |
−1 |
7pq |
7 |
||
(vi) |
1.2a+0.8b |
1.2a |
1.2 |
0.8b |
0.8 |
||
(vii) |
3.14r2 |
3.14r2 |
3.14 |
(viii) |
2(l+b)=2l+2b |
2l |
2 |
2b |
2 |
||
(ix) |
0.1y+0.01y2 |
0.1y |
0.1 |
0.01y2 |
0.01 |
4
(a) Identify terms which contain x and give the coefficient of x.
(i) y2x+y
(ii) 13y2−8yx
(iii) x+y+2
(iv) 5+z+zx
(v) 1+x+xy
(vi) 12xy2+25
(vii) 7x+xy
(b) Identify terms which contain y2 and give the coefficient of y2.
(i) 8−xy
(ii) 5y2+7x
(iii) 2x2y−15xy2+7y
Answer
(a)
S.No. |
Expression |
Term with factor x |
Coefficient of x |
(i) |
y2x+y |
y2x |
y2 |
(ii) |
13y2−8yx |
−8yx |
−8y |
(iii) |
x+y+2 |
x |
1 |
(iv) |
5+z+zx |
zx |
z |
(v) |
1+x+xy |
x |
1 |
xy |
y |
||
(vi) |
12xy2+25 |
12xy2 |
12y2 |
(vii) |
7x+xy2 |
xy2 |
y2 |
7x |
7 |
(b)
S.No. |
Expression |
Term contains y2 |
Coefficient of y2 |
(i) |
8−xy2 |
−xy2 |
−x |
(ii) |
5y2+7x |
5y2 |
5 |
(iii) |
2x2y−15xy2+7y2 |
−15xy2 |
−15x |
7y2 |
7 |
5
Classify into monomials, binomials and trinomials:
(i) 4y−7x
(ii) y
(iii) x+y−xy
(iv) 100
(v) ab−a−b
(vi) 5−3t
(vii) 4p2q−4pq
(viii) 7mn
(ix) z2−3z+8
(x) a2+b
(xi) z2+z
(xii) 1+x+x
Answer
S.No. |
Expression |
Type of Polynomial |
(i) |
4y−7z |
Binomial |
(ii) |
y2 |
Monomial |
(iii) |
x+y−xy |
Trinomial |
(iv) |
100 |
Monomial |
(v) |
ab−a−b |
Trinomial |
(vi) |
5−3t |
Binomial |
(vii) |
4p2q−4pq2 |
Binomial |
(viii) |
7mn |
Monomial |
(ix) |
z2−3z+8 |
Trinomial |
(x) |
a2+b2 |
Binomial |
(xi) |
z2+z |
Binomial |
(xii) |
1+x+x2 |
Trinomial |
6
State whether a given pair of terms is of like or unlike terms:
(i) 1, 100
(ii) −7x,5/2x
(iii) −29x,−29y
(iv) 14xy,42yx
(v) 4m2p,4mp2
(vi) 12xz,12x2z
Answer
S.No. |
Pair of terms |
Like / Unlike terms |
(i) |
1, 100 |
Like terms |
(ii) |
−7x,5/2x |
Like terms |
(iii) |
−29x,−29y |
Unlike terms |
(iv) |
14xy,42yx |
Like terms |
(v) |
4m2p,4mp2 |
Unlike terms |
(vi) |
12xz,12x2z2 |
Unlike terms |
7
(a) -xy2, -4yx2, 8x2, 2xy2, 7y, -11x2 -100x, -11yx, 20x2y, - 6x2, y, 2xy, 3x
(b) 10pq, 7p, 8q, -p2q2, -7qp, -100q, -23, 12q2p2, -5p2, 41, 2405p, 78qp, 13p2q, qp2, 701p2
Answer
(a) Like terms are:
(i) −xy2,2xy2
(ii) −4yx2,20x2y
(iii) 8x2,−11x2,−6x2
(iv) 7y,y
(v) −100x,3x
(vi) −11yx,2xy
(b) Like terms are:
(i) 10pq,−7pq,78pq
(ii) 7p,2405p
(iii) 8q,−100q
(iv) −p2q2,12p2q2
(v) −12,41
(vi) −5p2,701p2
(vii) 13p2q,qp
1
Answer
= 28b−20b−32 = 8b−32
(ii) −z2+13z2−5z+7z3−15z
=7z3+(−z2+13z2)−(5z+15z)
= 7z3+12z2−20z
(iii) p−(p−q)−q−(q−p)=p−p+q−q−q+p
= p−p+p+q−q−q = p−q
(iv) 3a−2b−ab−(a−b+ab)+3ab+b−a
=3a−2b−ab−a+b−ab+3ab+b−a
= 3a−a−a−2b+b+b−ab−ab+3ab
= (3a−a−a)−(2b−b−b)−(ab+ab−3ab)
= a−0−(−ab)
= a+ab
(v) 5x2y−5x2+3yx2−3y2+x2−y2+8xy2−3y2
=5x2y+3yx2+8xy2−5x2+x2−3y2−y2−3y2
= (5x2y+3x2y)+8xy2−(5x2−x2)−(3y2+y2+3y2)
= 8x2y+8xy2−4x2−7y2
(vi) (3y2+5y−4)−(8y−y2−4)=3y2+5y−4−8y+y2+4
= (3y2+y2)+(5y−8y)−(4−4)
= 4y2−3y−0 = 4y2−3y
2
Answer
=3mn+(−5mn)+8mn+(−4mn)
= (3−5+8−4)mn = 2mn
(ii) t−8tz,3tz−z,z−t=t−8tz+3tz−z+z−t
= t−t−8tz+3tz−z+z
= (1−1)t+(−8+3)tz+(−1+1)z
= 0−5tz+0 = −5tz
(iii) −7mn+5,12mn+2,9mn−8,−2mn−3
=−7mn+5+12mn+2+9mn−8+(−2mn)−3
= −7mn+12mn+9mn−2mn+5+2−8−3
= (−7+12+9−2)mn+7−11
= 12mn−4
(iv) a+b−3,b−a+3,a−b+3
= a + b - 3 + b - a + 3 + a - b + 3
= (a−a+a)+(b+b−b)−3+3+3
= a+b+3
(v) 14x+10y−12xy−13,18−7x−10y+8xy,4xy=14x+10y−12xy−13+18−7x−10y+8xy+4xy
= 14x−7x+10y−10y−12xy+8xy+4xy−13+18
= 7x+0y+0xy+5 = 7x+5
(vi) 5m−7n,3n−4m+2,2m−3mn−5=5m−7n+3n−4m+2+2m−3mn−5
= 5m−4m+2m−7n+3n−3mn+2−5
= (5−4+2)m+(−7+3)n−3mn−3
= 3m−4n−3mn−3
(vii) 4x2y,−3xy2,−5xy2,5x2y=4x2y+(−3xy2)+(−5xy2)+5x2y
= 4x2y+5x2y−3xy2−5xy2
= 9x2y−8xy2
(viii) 3p2q2−4pq+5,−10p2q2,15+9pq+7p2q2 = 3p2q2−4pq+5+(−10p2q2)+15+9pq+7p2q2
= 3p2q2−10p2q2+7p2q2−4pq+9pq+5+15
= (3−10+7)p2q2+(−4+9)pq+20
= 0p2q2+5pq+20= 5pq+20
(ix) ab−4a,4b−ab,4a−ab=ab−4a+4b−ab+4a−ab
= −4a+4a+4b−4b+ab−ab
= 0+0+0=0
(x) x2−y2−1,y2−1−x2,1−x2−y2 = x2−y2−1+y2−1−x2+1−x2−y2
= x2−x2−x2−y2+y2−y2−1−1+1
= (1−1−1)x2+(−1+1−1)y2−1−1+1
= −x2−y2−1
3
Answer
4
Answer
Then according to question,
x2+xy+y2+p=2x2+3xy⇒ p=2x2+3xy−(x2+xy+y2)
⇒ p=2x2+3xy−x2−xy−y2⇒ p=2x2−x2−y2+3xy−xy
⇒ p=x2−y2+2xy
Hence, x2−y2+2xy should be added.
(b) Let qq should be subtracted.
Then according to question,
2a+8b+10−q=−3a+7b+16
⇒ −q=−3a+7b+16−(2a+8b+10)
⇒ −q=−3a+7b+16−2a−8b−10
⇒ −q=−3a−2a+7b−8b+16−10
⇒ −q=−5a−b+6⇒q=−(−5a−b+6)
⇒ q=5a+b−6
5
Answer
Then according to question,
3x2−4y2+5xy+20−q=−x2−y2+6xy+20
⇒ q=3x24y2+5xy+20−(−x2−y2+6xy+20)
⇒ q=3x2−4y2+5xy+20+x2+y2−6xy−20
⇒ q=3x2+x2−4y2+y2+5xy−6xy+20−20
⇒ q=4x2−3y2−xy+0
Hence, 4x2−3y2−xyshould be subtracted.
6. (a) According to question,
(3x−y+11)+(−y−11)−(3x−y−11)(3x−y+11)+(−y−11)−(3x−y−11)
= 3x−3x−y−y+y+11−11+11
= (3−3)x−(1+1−1)y+11+11−11
= 0x−y+11 = −y+11
(b) According to question,
[(4+3x)+(5−4x+2x2)]−[(3x2−5x)+(−x2+2x+5)]
= [4+3x+5−4x+2x2]−[3x2−5x−x2+2x+5]
= [2x2+3x−4x+5+4]−[3x2−x2+2x−5x+5]
= [2x2−x+9]−[2x2−3x+5]
= 2x2−x+9−2x2+3x−5
= 2x2−2x2−x+3x+9−5
= 2x+4
1
Answer
= 0
(ii) 3m−5 = 3×2−5 [Putting m=2]
= 6 – 5 = 1
(iii) 9−5m = 9 – 5 x 2 [Putting m=2]
= 9 – 10 = −1
(iv) 3m2−2m−7= 3(2)2−2(2)−7 [Putting m=2]
= 3 x 4 – 2 x 2 – 7 = 12 – 4 – 7
= 12 – 11 = 1
(v) 5m2−4 = (5×2)/2−4
[Putting m=2]
= 5 – 4 = 1
2
Answer
= −8+7 = −1
(ii) −3p2+4p+7= −3(−2)2+4(−2)+7 [Putting p=−2]
= −3×4−8+7 = −12−8+7
= −20+7 = −13
(iii) −2p3−3p2+4p+7 = −2(−2)3−3(−2)2+4(−2)+7 [Putting p=−2]
= −2×(−8)−3×4−8+7= 16−12−8+7
= −20+23 = 3
3
Answer
[Putting x=−1]
= −2−7 = −9
(ii) −x+2 = −(−1)+2
[Putting x=−1]
= 1 + 2 = 3
(iii) x2+2x+1= (−1)2+2(−1)+1 [Putting x=−1]
= 1 – 2 + 1 = 2 – 2 = 0
(iv) 2x2−x−2 = 2(−1)2−(−1)−2 [Putting x=−1]
= 2 x 1 + 1 – 2 = 2 + 1 – 2
= 3 – 2
= 1
4
Answer
= 4 + 4 = 8
(ii) a2+ab+b2 = (2)2+(2)(−2)+(−2)2 [Putting a=2,b=−2]
= 4 – 4 + 4 = 4
(iii) a2−b2 = (2)2−(−2)2 [Putting a=2,b=−2]
= 4 – 4 = 0
5
Answer
[Putting a=0,b=−1]
= 0 – 2 = −2
(ii) 2a2+b2+1 = 2(0)2+(−1)2+1 [Putting a=0,b=−1]
= 2 x 0 + 1 + 1 = 0 + 2 = 2
(iii) 2a2b+2ab2+ab = 2(0)2(−1)+2(0)(−1)2+(0)(−1) [Putting a=0,b=−1]
= 0 + 0 + 0 = 0
(iv) a2+ab+2 = (0)2+(0)(−1)+2 [Putting a=0,b=−1]
= 0 + 0 + 2 = 2
6
Answer
= 5x−13 = 5×2−13 [Putting x=2]
= 10−13 = −3
(ii) 3(x+2)+5x−7 = 3x+6+5x−7 = 3x+5x+6−7
= 8x−1 = 8 x 2 – 1 [Putting x=2]
= 16 – 1 = 15
(iii) 6x+5(x−2) = 6x+5x−10 = 11x−10
= 11 x 2 – 10 [Putting x=2]
= 22 – 10 = 12
(iv) 4(2x−1)+3x+11 = 8x−4+3x+11 = 8x+3x−4+11
= 11x+7 = 11 x 2 + 7 [Putting x=−1]
= 22 + 7 = 29
7
Answer
= −4×3+6 [Putting x=3]
= −12+6=−6
(iii) 3a+5−8a+1 = 3a−8a+5+1 = −5a+6
= −5(−1)+6 [Putting a=−1]
= 5 + 6 = 11
(iv) 10−3b−4−5b = −3b−5b+10−4 = −8b+6
= −8(−2)+6 [Putting b=−2]
= 16 + 6 = 22
(v) 2a−2b−4−5+a = 2a+a−2b−4−5
= 3a−2b−9 = 3(−1)−2(−2)−9 [Putting a=−1, b=−2]
= −3+4−9 = −8
8
Answer
= 1000 – 3 x 0 = 1000 – 0 = 1000
(ii) p2−2p−100 = (−10)2−2(−10)−100 [Putting p=−10]
= 100+20−100 = 20
9
Answer
⇒ 2(0)2+0−a=5 [Putting x=0x=0]
⇒ 0+0−a=5⇒ a=−5
Hence, the value of a is −5.
10
Answer
⇒ 2a2+2ab+3−ab ⇒ 2a2+2ab−ab+3
⇒ 2a2+ab+3
⇒ 2(5)2+(5)(−3)+3 [Putting a=5, b=−3]
⇒ 2 x 25 – 15 + 3
⇒ 50 – 15 + 3
⇒ 38
1
Answer
S. No. | Symbol | Digit’s number | Pattern’s Formulae | No. of Segments |
(i) | 5 | 5n+1 | 26 | |
10 | 51 | |||
100 | 501 | |||
(ii) | 5 | 3n+1 | 16 | |
10 | 31 | |||
100 | 301 | |||
(iii) | 5 | 5n+2 | 27 | |
10 | 52 | |||
100 | 502 |
(i) 5n+1
Putting n=5,5 x 5 + 1 = 25 + 1 = 26
Putting n=10, 5 x 10 + 1 = 50 + 1 = 51
Putting n=100, 5 x 100 + 1 = 500 + 1 = 501
(ii) 3n+1
Putting n=5, 3 x 5 + 1 = 15 + 1 = 16
Putting n=10, 3 x 10 + 1 = 30 + 1 = 31
Putting n=100,3 x 100 + 1 = 300 + 1 = 301
(iii) 5n+2
Putting n=5, 5 x 5 + 2 = 25 + 2 = 27
Putting n=10, 5 x 10 + 2 = 50 + 2 = 52
Putting n=100, 5 x 100 + 2 = 500 + 2 = 502
2
Use the given algebraic expression to complete the table of number patterns:
S.No. |
Expression |
Terms |
|||||||||
1st |
2nd |
3rd |
4th |
5th |
… |
10th |
… |
100th |
… |
||
(i) |
2n−1 |
1 |
3 |
5 |
7 |
9 |
--- |
19 |
--- |
--- |
--- |
(ii) |
3n+2 |
2 |
5 |
8 |
11 |
--- |
--- |
--- |
--- |
--- |
--- |
(iii) |
4n+1 |
5 |
9 |
13 |
17 |
--- |
--- |
--- |
--- |
--- |
--- |
(iv) |
7n+20 |
27 |
34 |
41 |
48 |
--- |
--- |
--- |
--- |
--- |
--- |
(v) |
n2+1 |
2 |
5 |
10 |
17 |
--- |
--- |
--- |
--- |
10001 |
--- |
Answer
(i) 2n−1
Putting n=100, 2 x 100 – 1 = 200 – 1 = 199
(ii) 3n+2
Putting n=5, 3 x 5 + 2 = 15 + 2 = 17
Putting n=10, 3 x 10 + 2 = 30 + 2 = 32
Putting n=100, 3 x 100 + 2 = 300 + 2 = 302
(iii) 4n+1
Putting n=5,4 x 5 + 1 = 20 + 1 = 21
Putting n=10, 4 x 10 + 1 = 40 + 1 = 41
Putting n=100, 4 x 100 + 1 = 400 + 1 = 401
(iv) 7n+20
Putting n=5, 7 x 5 + 20 = 25 + 20 = 55
Putting n=10, 7 x 10 + 20 = 70 + 20 = 90
Putting n=100, 7 x 100 + 20 = 700 + 20 = 720
(v) n2+1
Putting n=5, 5 x 5 + 1 = 25 + 1 = 26
Putting n=10, 10 x 10 + 1 = 100 + 1 = 101
Putting n=100, 100 x 100 + 1 = 10000 + 1 = 10001
Now complete table is,
S.No. |
Expression |
Terms |
|||||||||
1st |
2nd |
3rd |
4th |
5th |
… |
10th |
… |
100th |
… |
||
(i) |
2n−1 |
1 |
3 |
5 |
7 |
9 |
--- |
19 |
--- |
199 |
--- |
(ii) |
3n+2 |
2 |
5 |
8 |
11 |
17 |
--- |
32 |
--- |
302 |
--- |
(iii) |
4n+1 |
5 |
9 |
13 |
17 |
21 |
--- |
41 |
--- |
401 |
--- |
(iv) |
7n+20 |
27 |
34 |
41 |
48 |
55 |
--- |
90 |
--- |
720 |
--- |
(v) |
n2+1 |
2 |
5 |
10 |
17 |
26 |
--- |
101 |
--- |
10001 |
--- |